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Abstract 
 
Biochar, a product manufactured through a technology with negative emissions obtained through the valorisation and 
superior use of agro-wastes, proves to have multiple uses (agriculture, environment, industry). The use in agriculture as 
an amendment or in the composition of some fertilizers that improve their nutrient supply properties contributes to the 
decrease of farmers` dependence on chemical fertilizers and the reduction of their application doses. This technology of 
using biochar supports farmers by combating soil degradation, increasing carbon content, simultaneously decreasing 
leached nutrients (especially nitrogen) and greenhouse gases, and decreasing the content of contaminants in 
agricultural products through the retention effect in the biochar structure of pesticides and heavy metals, which affect 
the production and quality of crops. At the same time, biochar represented a means of combating climate change, 
improving the physico-chemical properties of the soil and offering benefits to agricultural crops 
 
Key words: biochar, agriculture, soil, carbon, fertilizer. 
 
INTRODUCTION 
 
In addition to the development of new 
technologies such as precision agriculture, 
genetically modified crops, robotics, etc., 
inspiration can also be found in the application 
of traditional methods of improving soil 
fertility in modern agriculture. History shows a 
number of useful examples where people have 
tried to improve soil properties by applying 
charred wood (Sheil et el., 2012; Downie et al., 
2011; Ogawa & Okimori, 2010; Blackmore et 
al., 1990). 
The best-known example in the scientific 
literature is the creation of anthropogenic 
chernozems, also called Terra Preta de Índio, 
more than 8000 years ago (Glaser, 2007).  
These soils resulted from a substantial 
accumulation of organic waste, such as 
household waste, excrement, and residual 
biomass, along with unburned woody debris. 
These were further broken down and resulted 
in soils of surprisingly high fertility (Glaser & 
Birk, 2012).  
The phenomenon of Terra Preta de Índio has 
become the main inspiration of many scientists 
in the last two decades or so, with the main 
focus of their research on the role of biochar in 
improving soil properties and the question of 
whether the effect observed in Amazonia can 

be reproduced in other areas of the world 
(Horák et al., 2020). 
An economic way to manage agricultural waste 
is to transform it into a valuable product called 
biochar.  
Biochar production is becoming an alternative 
strategy for using agricultural waste in 
agricultural input. Residue production in large 
quantities in agro-forestry could be used as an 
abundant source of biochar preparation and 
become a solution for waste management 
(Gwenzi et al., 2015; Meng & Chen, 2013).  
Biochar, a product manufactured through a 
technology with negative emissions obtained 
through the valorization and superior use of 
agro-wastes, proves to have multiple uses 
(agriculture, environment, industry). 
The use of biochar covers several directions, 
making this material a valuable and 
multipurpose product due to its properties, 
namely: 
- waste management  (recycling of waste and 

promotion of green energy) (Das et al., 
2022); 

- climate mitigation (decrease green house 
gases) (Šimanský  et al., 2016; Cayuela et 
al., 2013; Ennis et al., 2012; Kameyama et 
al., 2012); 

- soil enchancement (improve soil quantity 
and fertility) (Burachevskaya et al., 2020; 
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Horák et al., 2020; Yazhini et al., 2020; 
Gondek et al., 2019; Shareef & Zhao, 
2016); 

- environmental remediation (removal of 
organic and inorganic polluants) (Toková et 
al., 2020; Mohamed et al., 2017; Gwenzi et 
al., 2015; Meng & Chen, 2013; Teixidó, et 
al., 2011; Cao et al., 2009); 

- energy storage (Liu et al., 2019); 
- carbon dioxide capture (sequesters carbon 

dioxide in good amounts, descreasing 
climate effects) (Fawzy et al., 2022; Horák 
et al., 2020; Van Zwieten et al., 2010); 

- hydrogel - composite (supports growts of 
plants, increase plant available water) 
(Ambika et al., 2022; Das et al., 2022); 

- nano-technology (supports nano-
structuresuch as nano fertilizers) (Tan et al., 
2016). 

More and more studies are dedicated to 
analysing the properties of biochar to better 
understand the potential benefits and risks of 
large-scale application in agriculture and 
environmental remediation. Therefore, the 
development, obtaining and application of 
biochar is very important and can predicts its 
benefits and behavior in the future (Lian & 
Xing, 2017; Mierzwa-Hersztek et al., 2017). 
Biochar is a stable "black carbon" that can be 
obtained from the pyrolysis of plant material, 
biomass, under anaerobic conditions. Biochar 
has gained great attention worldwide due to its 
specific properties and versatile activities in 
agriculture and the environment. Several 
definitions of biochar have been supported by 
several researchers. Of these, the most 
standardized and accepted definition is: “A 
solid material obtained from thermochemical 
conversion of biomass in an oxygen limited 
environment” (European Biochar Foundation-
EBC 2012; International Biochar Initiative-IBI 
2012).  
The sustainable production of biomass and its 
non-energetic use in materials or in the form of 
pyrolysis products (biochar and pyro-oils) is 
the simplest, safest and fastest method that can 
be implemented globally. 
Growing interest and research in soil biochar 
applications has been steadily increasing in 
recent years (Lehmann & Joseph, 2015; 
Verheijen et al., 2014). 

Biochar has physico-chemical properties that 
allow it to be used for a long time, safely 
accumulate carbon in the environment and 
improve soil health (Wang et al., 2021; Meena 
et al., 2020; Joseph et al., 2020). 
Numerous studies carried out in different soil 
and climate conditions have indicated a 
positive effect of biochar on soil chemistry 
(Horák et al., 2020; Gondek et al., 2019), of its 
ability to supply crops with nutrients (Beusch 
et al., 2019; El-Naggar et al., 2019; Mia et al., 
2017; Yavari et al., 2015), improving the 
biological and physical properties of the soil 
(Ajayi & Horn, 2016; Biederman & Harpole, 
2013; Lehmann et al., 2011). 
Incorporating biochar into soil can help reduce 
soil erosion by improving soil structure and 
increasing water infiltration. This can be 
particularly beneficial in areas prone to erosion 
or landslides. 
It should be noted that many studies have 
focused on problem soils (acidic, saline, with 
low soil organic carbon content) where biochar 
addition has led to substantial improvements in 
physical, chemical and biological 
characteristics (El-Naggar et al., 2019; Nguyen 
et al., 2018; Hseu et al., 2014; Jien & Wang, 
2013).  
However, it has been observed that biochar 
application can have the greatest effect on more 
fertile agricultural soils, where there is great 
economic and practical potential. Although 
there are many studies focusing on the short-
term effects of biochar application on soil 
properties, there have been only a limited 
number of published studies looking at the 
medium-term effects of biochar (>5 years). 
These studies can be divided into several 
groups. Some studies focus on the effect of 
repeated application of biochar over a period of 
several years (El-Naggar et al., 2019; Nguyen 
et al., 2018). 
The other group of studies includes works with 
a single application of biochar at the beginning 
of the establishment of the experiment, 
followed by a monitoring period reaching up to 
3-4 years (Aydin et al., 2020). 
There is a huge body of literature devoted to 
the results of biochar testing on almost all soil 
types. There are numerous studies on 
agricultural use that show that biochar can 
serve as an excellent soil amendment 
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(Burachevskaya et al., 2020; Shareef & Zhao, 
2016).  
From the total number of articles studied, they 
were chosen for this paper only those that refer 
to some of the properties of biochar and its use 
in agriculture (143). We used the Web of 
Science and Google search engines Academic 
following the keyword: biochar. 
 
BIOCHAR IN AGRICULTURE 
 
The management of crop residues is a difficult 
problem for farmers to ensure a balance 
between costs and that of sustainable 
agriculture. Although burning is the easiest 
way to destroy plant waste, it not only causes 
drastic environmental changes through the 
greenhouse gases generated, but also large 
amounts of nutrients are removed. Therefore, a 
technique is needed that protects the 
environment and, at the same time, improves 
the quality of the soil. Therefore, pyrolysis of 
biomass residues can become an alternative 
technique, viable compared to previous 
approaches. Biochar can be produced through 
the pyrolysis process and can be used as a soil 
amendment. The application of biochar 
improves the physico-chemical properties of 
the soil and improves production in the context 
of an ecological, sustainable agriculture 
(Yazhini et al., 2020).  
In recent years, the application of biochar as a 
soil amendment or attempts to formulate 
fertilizers with biochar content represents a 
new trend, mainly to reduce the leaching of 
nutrients and to improve the efficiency of their 
use, simultaneously with the improvement of 
the physical properties soil chemistry and the 
reduction of greenhouse gas emissions, in the 
context of carbon sequestration policy (Shy et 
al., 2020; Olad et al., 2018; Lehmann & 
Joseph, 2015; Zheng et al., 2013).  
Dependence only on inorganic, classical 
fertilizers for future agricultural growth would 
mean further loss of soil quality, possibilities of 
groundwater contamination and environmental 
pollution. In addition, the use of conventional 
fertilizers is expensive due to low nutrient use 
efficiency. 
Therefore, a rational and "personalized" 
fertilization of crops, effective, taking into 
account the pedo-climatic conditions, must be 

achieved by using technologies that do not 
disturb the environment, preserve, improve soil 
fertility, simultaneously with the improvement 
of the efficiency of agricultural systems and the 
implementation of sound and ecological 
agronomic practices (Francis et al., 2020; da 
Costa et al., 2019; Wu, 2011). 
One of the characteristics of biochar that makes 
it attractive as a soil amendment is its highly 
porous structure, potentially responsible for 
improved water retention and increased contact 
surface area. The addition of biochar to soil has 
also been associated with increased nutrient use 
efficiency, either through the nutrients 
contained in the biochar or through physico-
chemical processes that allow better use of soil-
own or fertilizer-derived nutrients (Kumawat et 
al., 2021; Trenkel, 2021; Francis et al., 2020; 
Shi et al., 2020; da Costa et al., 2019; Wu, 
2011). 
A number of studies have shown that biochar 
as a soil amendment has the potential to 
mitigate the effects of climate change by 
increasing soil organic carbon content and 
improving soil quality (Zhang et al., 2012; 
Laird et al., 2010).  
Importantly, it is the apparent biological and 
chemical stability that allows biochar to act as 
both a carbon sink and provide long-term soil 
benefits (Fawzy et al. 2022; Das et al., 2020). 
A preliminary analysis shows that European 
countries are already taking steps towards 
greater efficiency in the use of resources, 
mainly due to economic concerns related to 
their dependence, the energy crisis and the 
increase in the prices of raw materials 
worldwide. 
Crop quality and productivity can be improved 
by implementing responsible nutrient 
fertilization, combining the application of 
mineral, organo-mineral fertilizer products with 
slow/controlled nutrient release fertilizers and 
biofertilizers, respectively (Kumawat et al., 
2021; Trenkel, 2021; Shi et al., 2020; Bhatt et 
al., 2019; Hermida & Agustian, 2019; Iftime et 
al., 2019; Cole et al., 2016; Bhattacharjee & 
Dey, 2014; Xiaoyu et al., 2013).  
Kuwagaki & Tamura, 1990 proposed seven 
properties to be measured for an agronomic 
biochar quality assessment: pH, volatile 
compounds content, ash content, water holding 
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capacity, bulk density, pore volume and 
specific surface area. 
The potential benefits of biochar as a soil 
amendment are well identified in the literature. 
These include carbon sequestration, improved 
crop yields and increased water retention (Yu 
et al., 2013). According to several studies, an 
improvement in soil quality could be long 
lasting after the addition of biochar (Bruun et 
al., 2017), but also improving the state of soil 
fertility (Mašek et al., 2019; Atkinson et al., 
2010). Despite the fact that biochar is of 
increasing interest through the possibility of 
being used both as an amendment and in 
fertilizer products with slow/controlled nutrient 
release properties, their release mechanism and 
formulation face limitations that still require 
multiple and complex interdisciplinary research 
(Pogorzelski et al., 2020; Chen et al., 2018; El 
Sharkawiet al., 2018; Wen et al., 2017). 
Biochar application improves soil physical 
qualities, i.e., improves aeration, water holding 
capacity, increases porosity and reduces 
evapotranspiration and soil bulk density 
(Schulz et al., 2014; Mukherjee & Lal, 2013; 
Herath et al., 2013). However, the actual effect 
of this amendment depends on the type of 
biochar, production conditions, soil condition 
and the amount of biochar applied (Wang et al., 
2018). 
Aslam et al. (2014) attributed the improvement 
in soil physical properties after biochar 
introduction to the type of input material, 
pyrolysis conditions, biochar application rate, 
and the type of soil in which the biochar was 
applied and incorporated (Šimanský et al., 
2019). Different mechanisms have been 
proposed that increase nutrient availability to 
plants in different ecosystems provided by 
biochar application. Among these mechanisms 
are: the incorporation of soluble nutrient 
sources in biochar for a better availability for 
the needs of crops (Biederman & Harpole, 
2013; Sohi et al., 2010), reduction of nutrient 
leaching due to the physico-chemical properties 
of biochar (Liang et al., 2006) and minimizing 
nitrogen losses through NH3 volatilization and 
denitrification (Šimanský et al., 2016; Cayuela 
et al., 2013; Ennis et al., 2012; Kameyama et 
al., 2012). Biochar has a large surface area and 
different functional groups like carbonyl (R-
C=O), carboxyl (-O-C=O), hydroxyl (-O-H), 

ethers (C-O-C), aromatic or alkyl groups 
(Prasannamedha et al., 2021; Kameyama et al., 
2012), with a role for the transport of nutrients 
(El-Naggar et al., 2018; Xu et al., 2016; 
Prommer  et al., 2014; Biederman & Harpole, 
2013) and the elimination of pollutants (Qian et 
al., 2019; Tan et al., 2015; Cao et al., 2009).  
These attributes increase the nutrient retention 
capacity of biochar, even nitrate and phosphate 
anions (Prommer et al., 2014; Biederman & 
Harpole, 2013; Kameyama et al., 2012; Major 
et al., 2010). Thus, biochar could stabilize soil 
organic matter and increase respiration and 
reduce the bioavailability and phytotoxicity of 
heavy metals (Ennis et al., 2012; Park et al., 
2011). Biochar has also been shown to increase 
crop yields (El-Naggar et al., 2018; Xu et al., 
2016; Biederman & Harpole, 2013), reduces 
greenhouse gas (GHG) emissions and increases 
soil carbon storage (Horák et al., 2020; Rizhiya 
et al., 2019; Zhao et al., 2019; Horák et al., 
2017; Kameyama et al., 2012; Zhang et al., 
2012; Galinato et al., 2011; Van Zwieten et al., 
2010; Lehmann et al., 2006). A nutrient-
deficient or degraded soil can be treated with 
biochar, which is produced from a certain raw 
material and certain conditions of the pyrolysis 
process, ensuring the modification of the 
specific properties of the soil and the 
improvement of production (Robb et al., 2020; 
Ippolito et al., 2012). Various studies have 
reported a positive effect of biochar on soil 
hydrophysical and hydraulic properties (Salinas 
et al., 2018; Lehmann & Stephen, 2015; Arthur 
et al., 2015; Hardie et al., 2014). Biochar 
application positively affected bulk density 
(Zhang et al., 2012), soil porosity (Walters et 
al., 2018; Mukherjee et al., 2013; Jones et al., 
2010), soil water capacity (Karhu et al., 2011) 
and soil hydraulic conductivity (Lei & Zhang, 
2013; Makó et al., 2020). Due to the highly 
porous nature of biochar, its incorporation into 
soil can improve soil physical properties by 
creating new pores (Jones et al., 2010) 
attributed the partial filling of large cavities 
between coarse sand particles to the application 
of biochar.  
Castellini et al. (2015) consider that biochar has 
a potential impact on the physical properties of 
the soil and therefore may affect the water 
balance of the ecosystem. The study of Sun & 
Lu (2014) showed a positive effect of biochar 
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application on soil porosity and the ability to 
retain water and make it available to plants, 
resulting in an increase in crop yields. 
Biochar can serve as a habitat for beneficial 
soil microbes, including bacteria and fungi, that 
promote nutrient cycling and plant growth. 
This can lead to healthier, more productive 
agricultural systems. 
The appearance of some changes in the 
function and structure of the soil microbiome 
through the application of biochar is due to the 
modification of the C and N cycle, soil 
respiration and the flow of nitrogen oxides. 
Biochar coating tends to reduce nitrous oxide 
emissions (Zhang et al., 2016; Jia et al., 2010; 
Van Zwieten et al., 2010). 
The application of biochar improves the quality 
of the soil by improving its physico-chemical 
properties, its fertility and the efficiency of 
using nitrogen from fertilizers (Chan et al., 
2007). 
Applying biochar to the soil will become the 
affordable solution for soil modification with 
low nutrient content, acidity, increased salinity 
(Yazhini et al., 2020; Tian et al., 2018; Dai et 
al., 2017; Lin et al., 2015; Carter et al., 2013; 
Asai et al., 2009). The results of the 
experiments carried out so far clearly confirm 
the positive effect of biochar application on the 
organic content of the soil shortly after 
application (Igaz et al., 2018; Juriga et al., 
2018) which was noticed up to 3 years after the 
experiment (Horák et al., 2020; Šimanský et 
al., 2018). 
However, negative or no effects on soil 
characteristics and crop yields were also 
recorded (Jeffery et al., 2017), emphasizing the 
need for further studies to analyze the effects of 
biochar in a diversity of soil types and cropping 
systems. It was found that, despite the 
variability introduced by soil and climate, the 
addition of biochar to soil generally increased 
crop yield, soil microbial biomass, plant and 
soil nutrient concentration, and total soil 
carbon.  Despite the ability of the biochar to 
favourably modify the physico-chemical 
properties of the soil it also has some 
disadvantages: 
-the selection of raw material needs more 
attention; 
-sometimes the results may not show the 
significant effect of increasing crop yields by 

increasing nutrient availability (Spokas et al., 
2012); 
-hazardous by-products such as polycyclic 
aromatic hydrocarbons have the potential to 
result during the pyrolysis process (Weidemann 
et al., 2018; Gasco et al., 2016; Laghari et al., 
2016).  
In addition, due to the very stable nature of 
biochar it cannot be easily removed from the 
soil ecosystem (Jones et al., 2012). 
 
PROPERTIES OF BIOCHAR 

Biochar is obtained from thermal conversion of 
biomass. biochar is the main pyrolysis product, 
obtained by the thermochemical conversion of 
biomass in the absence of free oxygen at 
temperatures varying between 450 and 850 ◦C 
for a period between 6 and 8 h (Tibor & 
Grande, 2022). The biochar is a solid carbon-
rich, porous material produced by 
the thermochemical conversion of a diverse range 
of biomass feedstocks under an inert 
atmosphere (i.e., in the absence of oxygen) 
(Ghodake et al., 2021). Feedstocks are a 
primary factor governing the chemical and 
physical properties of biochar. Carbonization of 
agricultural waste can be advantageous 
compared to disposal as waste by other means 
(Demirbas, 2006). The properties of biochar 
vary greatly depending on the type of raw 
material used and the pyrolysis conditions. If 
the content of lignocellulosic material in the 
feedstock is high, it gives a higher biochar 
yield because the lignin is converted to carbon 
during the pyrolysis process (Ippolito et al., 
2020; Antunes et al., 2017; Schimmelpfennig 
& Glaser, 2012; Antal & Grønli, 2003). 
Biochar has heterogeneous properties due to 
the different raw materials that can be 
subjected to pyrolysis, such as stalks, cereal 
husks, seeds, wood waste, manure and sludge, 
vegetable and household waste, and others 
(Haddad  et al., 2021; Khiari et al., 2020; 
Pariyar et al., 2020; Qian et al., 2019; Ahmed 
et al., 2018; Dunnigan et al., 2018; Shaaban  et 
al., 2014; Angın, 2013; Kim et al., 2013; Tang 
et al., 2013; Ahmad et al., 2012; Zhang et al., 
2012; Galinato et al., 2011; Atkinson et al., 
2010). The increasingly advanced study of 
biochar, as well as pyrolysis technologies, 
deliberately controls the production of biochar, 
which allows obtaining a product with specific 
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properties defined and suitable for the way of 
use (Rajapaksha et al., 2016). Thus, increasing 
the pyrolysis temperature results in a larger 
surface area, a higher fixed carbon and a lower 
oxygen content (Ippolito et al., 2020; Manyà, 
2012). Higher pyrolysis temperatures result in 
lower ash content, higher pH, higher buffering 
capacity and finally an increase in the aromatic 
structure of the biochar which provides a high 

resistance to microbial decomposition and, 
therefore, it will improve carbon sequestration 
(Ippolito et al., 2012; Spokas et al., 2012; Singh 
et al., 2010). The properties of biochar can be 
influenced by the nature of the raw material, 
the pyrolysis process and the various process 
variables such as: pressure, heating 
temperature, 

heating rate, heating time and post-pyrolysis of 
the biochar (Ippolito et al., 2012; Manyà, 
2012). The technology for obtaining biochar is 
one of the few that is carried out with negative 
emissions, an important aspect for limiting 
global warming (Mašek et al., 2019). Biochar 
has a large, negatively charged internal surface 
that is resistant to degradation. Due to its 
properties, biochar acts as a porous 
carbonaceous sorbent generally produced from 
materials of biological origin (Tan et al., 2015). 
Thus, the control of these factors can lead to 
obtaining a biochar with specific characteristics 
such as surface area, volume and pore size, 
adsorption capacity, pH, carbon percentage, 
chemical composition, physical characteristics 
and cation exchange capacity (Ippolito et al., 
2020; Somerville & Jahanshahi, 2015; Cimò et 
al., 2014; Ronsse et al., 2013). For example, the 
pore volume for the biochar obtained from 
wheat straw at 400°C increased from 0.016 
(cm3g-1) to 0.034 (cm3g-1) in the case of 
pyrolysis at 600°C of the same raw material 
(Manna & Singh, 2015). In addition, the 
heating temperature of the raw material 
influences the surface of the biochar. For 
example, rice husk pyrolysis at 350°C and 
650°C having the surface area of 32,7 (m2g-1) 
and 261,72 (m2g-1) (Schmidt et al., 2015; 
Claoston et al., 2014). Another study mentions 
that the surface area of biochar obtained from 
wood increased from 1 m2g-1 to 317 m2g-1 by 
increasing the temperature of the pyrolysis 
process from 450°C to 700°C (Brewer et al., 
2014).  

CONCLUSIONS  

Biochar is a material that has received attention 
in the last 20 years, a fact proven by the large 
number of articles. An increase in the 
importance of the use of this material can be 
seen against the backdrop of environmental 
policies and the current political context. Based 

on our findings, biochar application leads to 
sustainable soil management in terms of carbon 
sequestration and conservation of soil structure. 
Although there are numerous studies from 
which the positive effects on the soil, 
agricultural yields and the environment result, 
there remain knowledge gaps regarding the 
biochar-soil-plant-environment relationship and 
interactions in the field in the long term. 
Important aspects that require research are 
related to the yield and long-term effects of 
repeated applications and the influence on the 
mobilization / retention of heavy metals for 
planning doses and frequency of applications. 
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