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Abstract  
 
This paper provides the results of assessing the possibility of using remote sensing data obtained from the Sentinel-2 with 
a spatial resolution of 10 m and simple Markov chains to predict the degree of development of Galega orientalis within 
the local area. The possibility of using remote sensing data obtained with the Phantom-4ProV 2.0 to assess the 
productivity of Silphium perfoliatum and Zea mays biomass was also evaluated. The studies were carried out in 2017-
2020 on the territory of Gorki district (Republic of Belarus). The research indicated that the use of the Markov model 
and the raster image of the NDVI index as a predictor makes it possible to accurately predict the areas with very poorly 
developed, poorly developed, moderately developed, developed and well-developed vegetation (χ2empiric = 0.401; χ2critical 
= 9.488). Vegetation indices ExG, VARI, WI, and EXGR, are suitable for creating a predictive multiple linear regression 
model that allows predicting the productivity of Silphium perfoliatum in the stalking phase with an error not exceeding 
2%, while indices RGBVI, ExG and EXGR it is advisable to use for yield predicting of corn (MAPE=5.19%). 
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INTRODUCTION 
 
Precision agriculture is a modern management 
concept that uses digital methods to monitor and 
optimize agricultural production processes 
(Maloku, 2020). In this regard, like no other 
industry, it needs high-precision data, of which 
more than 80% is geospatial data. The most 
reliable and demanded source of data for 
precision farming is remote sensing data, the 
share of which in the structure of precision 
farming technology elements has a steady 
tendency to increase on a global scale (Aulbur et 
al., 2019). In this regard the promising direction 
is the use of ultrahigh-resolution remote sensing 
data obtained from UAVs for monitoring and 
forecasting the productivity of grain and forage 
crops (Myslyva, 2020). Plant height data 
obtained from a digital model of the vegetation 
surface, which is created from the results of 
aerial photography, is traditionally used in 
assessing the biomass productivity of spring 
wheat (Zhaopeng et al., 2020; Hassan, 2019), 
winter barley (Bendig et al., 2015; 2014), corn 
(Furukawa et al., 2020; Zhang et al., 2020). For 
fodder crops, UAV data are used to assess the 

productivity of pasture grasses (Michez et al., 
2019; Barbosa et al., 2019). However, the 
methodology for performing this type of work 
differs in the context of individual crops and 
their growing conditions. Moreover, it needs 
improvement and adaptation to the specific 
economic and agroecological conditions of a 
particular territory. 
The most important indicator of the efficiency of 
the agricultural sector is the volume of crop 
production and the yield of agricultural crops. 
Against the background of global climatic 
changes, reliable forecasting of the productivity 
of agricultural crops is a rather difficult process, 
since a number of factors are involved in the 
formation of the yield. Improving the quality of 
predictive models is possible through the 
combined use of various types of data and 
forecasting techniques. In particular, to predict 
the yield, the capabilities of neural networks 
(Crane-Droesch, 2018; Shivnath Ghosh, 2014) 
and remote sensing data (Khaki & Wang, 2019; 
Ennouri & Kallel, 2019) are widely used, which 
provides quick analysis in the state of crops and 
plantations of agricultural crops over large 
areas. An effective and at the same time simple 
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way to simulate random events, which includes 
forecasting the productivity of biomass, is 
modelling using Markov chains. At present, it is 
widely used to predict the productivity of 
various agricultural crops, however, such 
studies have not previously been performed in 
Belarus. In this regard, the development of 
predictive models that make it possible to obtain 
reliable estimates of crop productivity based on 
the joint use of remote sensing data and 
statistical modelling becomes relevant. 
In this context, the paper presents the results of 
assessing the possibility of using remote sensing 
data with medium and ultra-high resolution and 
Markov chains for predicting the productivity of 
Galega orientalis, Silphium perfoliatum and Zea 
mays in agroecological conditions of the north-
eastern part of the Republic of Belarus. 
 
MATERIALS AND METHODS  
 
The studies were carried out in 2017-2020 on the 
territory of the Gorki district, Mogilev region of 
the Republic of Belarus. Information about the 
location of the research objects is shown in 
Figure 1. 
 

 
Figure1. Location of the research object 

 
The object of the research was the development 
and biomass productivity of the following crops: 

– Silphium perfoliatum L. (common name – cup 
plant), variety Owari giant (Hungary), 
development phase – full plant stem phase; 
– Zea mays L., hybrid Rodriguez (KWS), FAO 
170, development phase – R6, V13; 
– Galega orientalis L. (common name – goat's 
rue), variety Nesterka (Belarus), development 
phase – full regrowth after the second cut. 
The research was carried out in several stages, 
the list of which is presented in Figure 2. 
 

 

 
Figure 2. Stages of the researches 

 
The UAV used in this study was quadcopter 
Phantom-4ProV 2.0. It is equipped with a 
20 MРх digital camera with RGB-sensor. 
Images were captured at 50 m above ground 
level. Shooting spatial resolution – 2.5 cm; 
longitudinal and transverse overlap – 80%, the 
number of images obtained – 236 pcs and 216 
respectively. Survey date: June 6, 2020 
(Silphium perfoliatum) and July 27, 2020 (Zea 
mays). 
The flight mission was formed using the Drone 
Deploy software product. Aerial photography 
data processing, elevation mapping and 
orthomosaic creation were performed using 
Agisoft PhotoScan Professional software. 
The vegetation indices were calculated using the 
QGIS 3.16. The following indices were 
calculated: RGBVI (Red Green Blue Vegetation 
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Index), GLI (Green Leaf Index), VARI (Visible 
Atmospherically Resistant Index), NGRDI 
(Normalized Green-Red Difference Index) 
(Bendig et al., 2015); ExG (Excess Green 
Index), WI (Woebbecke Index) (Woebbecke et 
al., 1995); EXGR (Excess Green-Red Index) 
(Meyer & Neto, 2008); VEG (Vegetativen) 
(Marchant & Onyango, 2000); CIVE (Color 
Index of Vegetation) (Kataoka et al., 2003); 
COMB1 (Сombined Index 1), COMB2 
(Сombined Index 2), GR (Ratio Green/Red 
Index), SAVI (Soil Adjusted Vegetation Index) 
(Beniaich et al., 2019). 
On the day of the survey, 60 biomass samples of 
silphium and 42 samples of corn were randomly 
selected to verify the results within the study 
area in the field. The sampling sites were 
coordinated using GPS positioning. For each 
sample taken, its length in cm, weight in kg and 
density in kg/m3 were determined. 
To predict the development of plants, the 
methodological approaches outlined in the 
works of Chinese scientists (Li & Zhu, 2018) 
were used in relation to forecasting types of land 
use. A simple Markov chain, taking into account 
the correlation between adjacent members of the 
series, was used to predict the degree of 
development of the Galega orientalis. The 
prediction is based on the calculation of the 
transition matrix, the elements of which are the 
probabilities of transition of the predicted 
parameters from one state to another, from one 
value to another.  
As a source of geospatial data with medium 
resolution, three scenes obtained from satellites 
Sentinel 2A (October 2017) and Sentinel 2B 
(October 2018, 2019) with a spatial resolution of 
10 m (datum – WGS-84, map projection UTM 
36N, processing level – 1C) were used. 
The degree of vegetation cover development 
was assessed by the value of the vegetation 
index NDVI (Normalised Difference Vegetation 
Index) (Jinru & Baofeng, 2017).  
Remote sensing data were processed using the 
functionality of ArcGIS version 10.5. The 
classification of rasters with vegetation index 
NDVI was carried out using the method of 
principal components. 
Statistical processing of the obtained results, 
construction of regression models and their 
cross-validation were performed in the Statistica 
13.0 (TIBCO Software Inc.). 

RESULTS AND DISCUSSIONS  
 
At the first stage, crop surface model (CSM) in 
*tif image format with a resolution of 2.5 cm 
was obtained after processing the results of 
aerial photography. The minimum height of the 
constructed surface of silphium plant heights 
was 143.64 cm, the maximum – 144.66 cm, 
average – 144.17 cm, standard deviation – 0.18 
cm. For maize the minimum height of the CSM 
was 161.59 cm, the maximum – 164.25 cm, 
average – 163.06 cm, standard deviation – 
0.67 cm. To obtain plant heights, the difference 
between the vegetation heights obtained from 
the surface model raster and the minimum 
height determined within the raster was found. 
The raster image of the surface model of the 
silphia vegetation cover was reclassified into 11 
classes, since the minimum determined plant 
height was 0.1 m, and the maximum - 1.1 m with 
a step of 0.1 m. The raster image of the surface 
model of the maize vegetation cover was 
reclassified into 6 classes with a step of 0.01 m. 
Further, the area occupied by plants with 
different heights within the study area was 
determined, and the productivity of the biomass 
was calculated (Figure 3). 
 

 
a) Silphium perfoliatum 

 
b) Zea mays 

 
Figure 3. Productivity of Silphium perfoliatum (a) and 
Zea mays (b) biomass, determined from the data of the 

UAV survey 
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The minimum yield of raw silphia biomass was 
1.49 t·ha-1, the maximum – 16.4 t·ha-1, and the 
weighted average yield was 8.63 t·ha-1, while for 
dry biomass the minimum, maximum and 
weighted average yields reached 0.29 t·ha-1, 
3.15 t·ha-1 and 1.72 t·ha-1, respectively.  
The following results were obtained for maize: 
the minimum yield of raw biomass was 2.72 
t·ha-1, the maximum – 16.63 t·ha-1, and the 
weighted average yield was 11.66 t·ha-1, while 
for dry biomass the minimum, maximum and 
weighted average yields reached 0.82 t·ha-1, 
4.98 t·ha-1 and 3.49 t·ha-1, respectively. 
To determine the reliability of the assessment of 
biomass productivity, the actual plant height 
measured in the field was compared with the 
data obtained using the UAV, and the plant 
productivity was determined, calculated from 
the actual and predicted heights. It was found 
that the results obtained are in fairly good 
agreement with each other, and their 
relationship is described by a linear relationship. 
The correlation coefficient between the actual 
and predicted values of the productivity of 
silphia and maize was 0.98 and 0.89, and the 
average approximation error was 3.3 and 4.9%, 
respectively, which indicates the reliability of 
the established dependencies (Figure 4). 
 

 
a) Silphium perfoliatum 

 

 
b) Zea mays 

 

Figure. 4. The relationship between the actual and 
predicted biomass productivity 

At the second stage of the researches, the 
possibility of using data on the value of 
vegetation indices for assessing biomass 
productivity was assessed. Vegetation indices 
were calculated using normalized RGB 
channels. The RGB bands were converted into 
normalized forms using the following 
Equation (1) (Yahui et al., 2020): 
 

R=r÷(r+g+b); G=g÷(r+g+b); B=b÷(r+g+b), 
 
where r, g, and b are the original digital values 
from the RGB images. 
For silphia, the average values of the vegetation 
indices RGBVI, NDRGI, and GLI, as well as the 
vegetation indices SAVI and ExG, were quite 
similar to each other, while the average values 
of the GR and VEG indices had the highest 
values. At the same time, for maize, the 
maximum mean values were observed for the 
vegetation indices CIVE, COMB 1 and 
COMB 2, and the mean values of GLI and 
VARI, as well as NDRGI and SAVI, were 
similar to each other (Figure 5). 
 

 
 

a) Silphium perfoliatum 
 

 
 

b) Zea mays 
 

Figure. 5. Statistical characteristics of the values of 
vegetation indices obtained from the orthomosaic created 

on the basis of UAV imagery in RGB 
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However, the results of assessing the 
relationship between the values of vegetation 
indices and biomass productivity indicate that, 
despite the similarity of the absolute values, 
these vegetation indices are characterized by 
varying degrees of relationship with the 
productivity of silphia and maize biomass 
(Table 1–2). 
 

Table 1. The relationship between the values of the 
vegetation indices obtained from the orthomosaic and the 
raw biomass productivity of Silphium perfoliatum, n = 60 

Vegetation index R2 RMSE, t·ha-1 MAPE, % 
ExG 0.95 1.08 20.5 

RGBVI 0.94 1.12 27.0 
NGRDI 0.94 1.12 20.7 
EXGR 0.93 1.22 23.2 
CIVE 0.91 1.40 15.9 

WI 0.90 1.47 19.3 
GR 0.89 1.51 30.2 
GLI 0.87 1.68 38.5 
VEG 0.83 1.94 39.1 

COMB1 0.78 2.23 44.7 
COMB2 0.78 2.20 43.7 
VARI 0.66 2.74 43.7 
SAVI 0.44 3.53 58.7 

 
Table 2. The relationship between the values of the 

vegetation indices obtained from the orthomosaic and the 
raw biomass productivity of Zea mays, n = 42 

Vegetation index R2 RMSE, t·ha-1 MAPE, % 
ExG 0.90 1.58 13.5 

RGBVI 0.62 3.58 29.6 
NGRDI 0.87 1.82 16.2 
EXGR 0.85 1.98 21.9 
CIVE 0.81 2.53 25.2 

WI 0.95 1.41 12.5 
GR 0.89 1.75 14.6 
GLI 0.71 3.25 18.4 
VEG 0.92 1.51 13.1 

COMB1 0.76 2.59 15.6 
COMB2 0.76 2.20 15.2 
VARI 0.65 3.21 29.4 
SAVI 0.56 3.87 33.3 

 
In particular, the strongest direct linear 
relationship with the productivity of silphia 
plants was established for the ExG, RGBVI, 
NGRDI indices, while the productivity of maize 
biomass was closely related to the WI, VEG, and 
ExG indices. The VARI and SAVI indices are 
characterized by the least dependence on the 
biomass productivity of both silphia and maize. 
It should be noted that the high information 
content of the ExG vegetation index is also 
indicated by (Beniaich et al., 2019; Tumlisan, 
2017), and the RGBVI index, by (Bendig et al., 
2015). The SAVI vegetation index is most 
suitable for distinguishing between vegetated 
and open soil areas, however, like the combined 
COMB1 and COMB2 indices, it is not 
informative enough for assessing biomass 

productivity. Its low indicator capacity is also 
evidenced by the results of the study presented 
by Zhaopeng et al., 2020. The results obtained 
also correlate with the data of Michez et al., 
2019, in which, when establishing the possibility 
of using vegetation indices RGBVI, GLI, 
NGRDI and VARI to assess the biomass 
productivity of meadow grasses the root-mean-
square error of the estimate was 6.02 t·ha-1, 5.04 
t·ha-1, 1.93 t·ha-1 and 1.42 t·ha-1, respectively. 
The calculation of the average approximation 
error indicates that, despite the presence of a 
rather strong direct linear relationship between 
the values of individual vegetation indices and 
the productivity of silphia and maize biomass, 
the use of any one index for a reliable 
assessment of the productivity level of these 
crops is not possible, since even for the most of 
informative indices, the average approximation 
error reached 16–27% and 12–14%, 
respectively. In this regard, the third stage of the 
study was to establish the possibility of using a 
complex of vegetation indices to determine the 
productivity of biomass by performing stepwise 
multiple regression. As a result, a regression 
model of the following form was obtained (2): 
 

y = –317.181+0.997*WI – 4.702*VARI – 
389.566*EXGR + 417.682*ExG 

 
The mean absolute percentage error of this 
model was 1.82%, the average error (SE) was 
0.18 t·ha-1, and the root mean square (RMSE) 
was 0.13 t·ha-1, which indicates its high 
reliability and suitability for monitoring biomass 
productivity of Silphium perfoliatum in the full 
plant stem phase. 
A regression model of the following type was 
obtained for corn (3): 
 

y = 16.558 – 0.135*RGBVI + 0.119*ExG – 
0.097*EXGR 

 
The mean absolute percentage error of this 
model was 5.19%, the average error (SE) was 
0.81 t·ha-1, and the root mean square (RMSE) 
was 2.30 t·ha-1, which indicates its high 
reliability and suitability for monitoring the 
productivity of Zea mays biomass in the R6 V13 
phase. 
The prognosis of the development of the 
vegetation cover represented by 
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Galega orientalis and the assessment of its 
effectiveness were also carried out in several 
successive stages. At the first stage, the 
calculation of the Normalized Difference 
Vegetation Index, NDVI was carried out 
(Myslyva et al., 2020), and raster images of the 
vegetation cover were obtained at different time 
periods (Figure 6). 
 

 

 

 
Figure. 6. Raster images of the vegetation index NDVI: 

а – 2017, b – 2018; c – 2019 
 
The resulting rasters were classified according 
to the method of principal components. 
Furthermore, they were differentiated by the 
NDVI value by calculating the classes by the 
method of natural boundaries. The intervals of 

values of the vegetation index corresponding to 
one or another degree of development of the 
vegetation cover in the studied area are 
presented in Table 3. 
 

Table 3. Intervals of vegetation index values 
corresponding to the degree of vegetation cover 

development 
Plant development level Range of NDVI values 
Very poorly developed 0.15–0.30 

Weak developed 0.31–0.36 
Medium developed 0.37–0.50 

Developed 0.51–0.60 
Well developed 0.61–0.77 

 
The transformation of the obtained raster images 
into vector layers made it possible to determine 
the areas within the raster, corresponding to one 
or another level of plant development (Table 4).  
 

Table 4. Distribution of areas with different degrees of 
vegetation development (based on the results of 

determining the value of the vegetation index NDVI), % 

Year 

Plant development level 
very 

poorly 
developed 

weak 
developed 

medium 
developed developed well 

developed 

2017 20.84 27.07 12.56 16.62 22.91 
2018 19.39 5.81 31.23 18.73 24.82 
2019 25.48 23.46 41.08 5.083 4.88 

 
The rasters of 2017 and 2018 were used for the 
prediction, and the raster of 2019 served as a 
basis to assess the accuracy of the prediction. 
The initial state matrix S(0) was constructed 
based on the data presented in the Tables 3 
and 4 (4): 
 

S(0) = 

[
 
 
 
 17.67
22.95
10.65
14.09
19.42]

 
 
 
 
=  

[
 
 
 
 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 − 0.15 − 0.30
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 − 0.31 − 0.36
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 −
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 −
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 −

0.37 −
0.51 −
0.61 −

0.50
0.60
0.77]

 
 
 
 
 

 
The next stage of the research was the 
construction of a matrix of the probability of 
vegetation transition from one state to another. 
To achieve this goal, the rasters of 2017 and 
2018 were overlaid and the areas of their mutual 
intersection were determined. Further, the 
obtained values were transformed into a matrix 
of transition of areas with different degrees of 
plant development. The matrix of the transition 
of areas in hectares was recalculated into the 
matrix of the probability of transitions of areas 
with different degree of development of 
vegetation cover in one class or another 
(Table 5). 
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Table 5. Matrix of probability of transitions of areas with 

different degrees of vegetation development (n = 0) 

2017 
2018 

Plant development level 
very poorly 
developed 

weak 
developed 

medium 
developed developed well 

developed 
Very 

poorly 
developed 

0.143875 0.528585 0.322489 0.005051 0 

Weak 
developed 0.184886 0.370909 0.323199 0.112836 0.008169 
Medium 

developed 0.0544338 0.034638 0.031049 0.412253 0.467626 
Developed 0.226778 0.148231 0.049930 0.145621 0.429439 

Well 
developed 0.443318 0.449301 0.087082 0.003237 0.017062 

 
At the final stage, the forecast for the 
development of galega in 2019 was carried out. 
For its implementation, the matrix of the initial 
state and the matrix of the probability of 
transition from one state to another were used. 
The actual and predicted values of the areas with 
varying degrees of vegetation development were 
used to assess the accuracy of the forecast, while 
the χ2 criterion was used to test the forecast 
model (Table 6). 
 
Table 6. Results of estimation of accuracy of the forecast 

model of vegetation cover development, hectares 
Plant 

development 
level 

Predicted 
value (Y') 

Actual 
value (Y) 

Absolute 
error (Y' – Y) (Y' – Y)2 

Very poorly 
developed 

21.61 19.26 –2.35 5.54 

Weak 
developed 

19.89 20.35 0.46 0.21 

Medium 
developed 

34.83 32.22 –2.61 6.83 

Developed 4.31 9.07 4.76 22.62 
Well 

developed 
4.14 6.78 2.64 6.98 

χ2
empirical = 0.401; χ2

critical = 9.488 

 
The maximum value of the absolute error is 
typical for forecasting areas with medium 
developed, developed and well-developed 
vegetation. This phenomenon can be explained 
by the fact that in the process of recognizing 
rasters with the vegetation index NDVI by the 
method of principal components it is rather 
difficult to distinguish these classes, since their 
spectral brightness is in a rather close range of 
values. However, it is possible to improve the 
quality of recognition by performing 
preliminary raster segmentation and then 
applying machine learning to classify it. 
 
CONCLUSIONS 
 
The results obtained give reason to recommend 
the use of ultra-high-resolution remote sensing 
data obtained from UAVs to assess the biomass 

productivity of Silphium perfoliatum and Zea 
mays. 
Plant height data obtained from an aerial-based 
crop surface model is suitable for use in 
estimating the productivity of silphia and maize 
biomass: the R2 for the relationship between 
actual productivity and remotely sensed 
productivity is 0.98 and 0.89, respectively. 
Predictive models created by the method of 
stepwise multiple linear regression, including a 
complex of several vegetation indices, make it 
possible to determine the silphia and maize 
biomass productivity according to ultra-high-
resolution remote sensing data with an error of 
no more than 2-5%. 
Medium resolution remote sensing data 
obtained with the Sentinel 2 and the 
functionality of GIS technologies allow creating 
adequate models using Markov chains for 
predicting the development of Galega orientalis 
in local areas. 
The process of predicting the productivity of 
galega plants using Markov chains should 
include such stages as: obtaining a raster image; 
raster classification and converting it to vector 
layer; construction of an initial state matrix and 
a transition probability matrix. 
Further research should focus on assessing the 
validity of the resulting models in the field. The 
results of this study can be useful both in the 
development of forecasting methodology and in 
direct forecasting of the biomass productivity of 
Silphium perfoliatum, Zea mays and other 
fodder crops, in particular Helianthus annuus 
and Helianthus tuberosus, as well as for 
assessing the productivity of pastures and 
creating effective pasture crop rotations. 
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